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EXECUTIVE SUMMARY 

Introduction 

The Sagamore Parkway Bridge consists of twin parallel bridges 
over the Wabash River in Lafayette, IN. The old steel-truss 
eastbound bridge was demolished in November 2016 and replaced 
by a new seven-span concrete bridge. The new bridge consists of 
two end-bents (bent 1 and bent 8) and six interior piers (pier 2 to 
pier 7) that are founded on closed-ended and open-ended driven 
pipe piles, respectively. During bridge construction, one of the 
bridge piers (pier 7) and its foundation elements were instrumen-

ted with sensors to monitor the bridge response to dead and live 
loads. The main goals of the project were (1) to compare the 
design bridge loads (dead and live loads) with the actual measured 
loads and (2) to study the transfer of the superstructure loads 
to the foundation and the distribution of loads among the piles in 
the group. 

This report presents, in detail, the site investigation data, the 
instrumentation schemes used for load and settlement measure-

ments, and the response of the bridge pier and its foundation to 
dead and live loads at different stages during and after bridge 
construction. The measurement results include the load-settlement 
curves of the bridge pier and the piles supporting it, the load 
transferred from the bridge pier to the foundation elements, the 
bearing capacity of the pile cap, the load eccentricity, and the 
distribution of loads within the pier’s cross section and among 
the individual piles in the group. The measured dead and live 
loads are compared with those estimated in bridge design. 

Findings 

The load-settlement response of pier 7 under the dead loads 
during the construction of the bridge was almost linear. Pier 7 
settled by 2.7 mm from the completion of the construction of the 
hammer head on January 18, 2018, to March 17, 2020. The pile 
head settlement from pile installation on November 15, 2016, to 
March 17, 2020, was estimated to be 5.2 mm. The secant stiffness 
of an average pile in the 365 pile group supporting pier 7 
calculated at a settlement level of 5 mm was 46.4 kips/mm—this is 
about 61% (76.4 kips/mm) of the single, isolated test pile, as 
obtained from the static pile load test performed in 2016. At the 
end of the bridge construction on November 16, 2018, the piles 
under pier 7 carried about 77% (5 3,725 kips) of the total dead 
load (5 4,869 kips applied on the pile cap; it includes the weight of 
the bridge deck, beams, pier, pile cap, and back fill), while the 
remaining 23% (1,145 kips) was carried by the pile cap resting 
on soil. The average dead load per pile supporting pier 7 was 
measured to be 248 kips at the completion of the bridge 
construction. Assuming that the dead load carried by the soil 
under the pile cap was zero (to be consistent with the assumption 
made during bridge design) and that all the dead load was carried 
by the piles, the average dead load per pile would be 325 kips, 
which is in close agreement with the unfactored design dead load 
of 336 kips per pile. 

A live load test was performed in March 2019 by parking twelve 
loaded triaxle trucks at specified locations on the bridge deck near 
pier 7. The live loads (resulting from the truck loads) measured in 
the bridge pier and on the pile heads increased as the trucks 
approached the pier and decreased to nearly zero as the trucks left 
the bridge. The eccentricity (of 5 ft) of the live loads (due to the 
asymmetric driveway lane design) resulted in uneven load 
distribution in the bridge pier and among the fifteen piles in the 

group supporting it. The maximum live load (at step 4) in the pier 
was 460 kips (2,046 kN), corresponding to a ratio of 16% between 
the live load and the dead load in the bridge pier loaded with 
twelve loaded triaxle trucks. About half of the live load applied on 
the bridge pier was carried by the piles, while the remaining half of 
the live load was carried by the soil below the pile cap. In contrast, 
about 77% of the dead load was carried by the piles at the end of 
the bridge construction. The maximum vertical live load carried 
by a pile in the group under pier 7 was measured as 23 kips during 
the live load test. Assuming that the load carried by the pile cap 
was fully transferred to the piles, the maximum live load carried 
by a pile in the group supporting pier 7 is 53 kips. This is in close 
agreement with the maximum unfactored live loads in a pile 
obtained from simulations performed by Parsons Corporation on 
the live load test; the maximum unfactored live loads in a pile are 
62 kips and 51 kips assuming continuous-span and simple-span 
bridge models, respectively. 

Implementation 

Several implementation items were identified from this research 
project: (1) a developed instrument scheme that can be applied in 
other bridge projects, (2) suggestions on how to consider pile cap 
capacity and pile group effects in projects similar to the Sagamore 
Parkway Bridge project, (3) a validated design method for open-

ended pipe piles, and (4) the continuous wireless monitoring of the 
foundations of the Sagamore Parkway Bridge. 

A unique instrumentation scheme (as detailed in Chapter 3) was 
developed in this project for the short- and long-term monitoring 
of the performance of bridges subjected to dead and live loads. 
Using the developed instrumentation schemes, it was possible to 
measure the bridge pier settlement with submillimeter accuracy, 
even in the absence of access to the bridge pier (as when the site 
is flooded or when there are piers located in the river) and to 
monitor the load transfer from the superstructure to the 
foundation elements, both during construction and under service 
conditions. With the detailed instrumentation steps provided in 
this report, the instrumentation schemes followed for the 
Sagamore Parkway Bridge can be easily implemented in similar 
bridge projects to monitor the response of pile foundations to 
loads. Monitoring of the performance of bridge foundations is 
highly recommended whenever deemed feasible by INDOT: 
instrumentation cost is low compared with the cost of bridge 
design and construction, and the data from load and settlement 
measurements is of significant value. The high-quality monitoring 
data not only lays the basis for the improvement of foundation 
design methods and bridge design, but also enables the evaluation 
of the performance of bridges in a quantitative manner. 

The contribution of the pile cap to the bearing capacity of the 
foundation of pier 7 was monitored for a period of almost 3 years. 
The pile cap resistance, which is the resistance carried by the soil 
under the pile cap, is typically ignored in routine bridge design. It 
was measured to be at least 20% of the dead load and about 50% 
of the live load. This means that the pile cap resistance could be 
considered in foundation design at least for piers that are not 
prone to scour (e.g., piers that are located on the riverbank or 
those located below the scour depth), leading to significant time 
and cost savings for INDOT. The cap resistance is dependent on a 
number of factors, including the size of the pile cap, pile group 
layout, and the soil profile below the pile cap. The ratio of the cap 
resistance to the total foundation resistance obtained in this 
research is only applicable to similar foundation layouts and soil 
conditions. Further research is needed to study the contribution of 
the pile cap to the overall bearing capacity of foundation under a 
wide range of scenarios. 



According to the measurements made in this project, the 
response of an average pile in a pile group to axial loads is 
different from that of a single pile due to the pile-soil-pile 
interaction. The load-settlement stiffness of an average pile in 
the group is smaller (by about 40% for the present case) than that 
of a single pile in the same soil profile. This is consistent with 
the findings obtained from advanced numerical simulations for 
a pile group of similar size and configuration as that of pier 7. 
The different load-settlement stiffnesses of a single pile and an 
average pile in a group should be considered in bridge foundation 
design, especially for cases in which the vertical settlement is 
critical in design. 

The monitoring of the bridge pier over the course of this project 
shows that the bridge has performed very well under dead and live 
loads, proving the successful foundation design based on the high-

quality data obtained from the static load tests performed at the 
site. An example of the design of a production pile that follows the 
LRFD framework and uses the data obtained from the static pile 
load test is provided in this report as reference for future bridge 
foundation designs by INDOT. The dead loads measured during 
bridge construction agree closely with those estimated in the 
bridge design. Furthermore, the maximum live load measured 
during the live load test is in close agreement with the live loads 
obtained from simulations of the live load test done by Parsons 
Corporation for a continuous-span bridge and a simple-span 
bridge. 

Continuous monitoring of the Sagamore Parkway Bridge using 
a wireless data acquisition (DAQ) system is strongly recom-

mended to continue to study the long-term performance of the 
bridge under service since all the sensors are fully functional; this 
is due to the careful instrumentation procedures followed and the 
effective protection of the sensors and cables from damage during 
concrete pouring. With the continuous monitoring of the bridge 
pier and foundation, we will be able to study the effects water 
table fluctuation, potential scour during extreme weather events, 
and dynamic loads due to traffic and wind have on long-term 
bridge performance. This would be a valuable addition to this 
unique case history considering the completeness of the dataset, 
which included full site investigation and soil characterization, 
dynamic and static load tests on fully instrumented test piles, load 
and settlement monitoring of the bridge pier and its foundation 
elements under dead and live loads during and after bridge 
construction. With the implementation of a wireless DAQ system, 
engineers and researchers will be able to monitor the bridge 
performance from their office in real time. This is expected to 
significantly improve the efficiency of data collection (by 
eliminating or reducing the need for frequent site visits) and to 
ensure the safety of transportation infrastructure. Instrumentation 
schemes similar to the ones used in this project can be 
implemented at other bridge sites to augment the dataset acquired 
in this project and improve the design and performance of bridge 
and foundations in the state of Indiana. 
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1. INTRODUCTION 

1.1 Background 

In bridge design, assumptions are made to estimate 
the dead and live loads when designing both the 
superstructure and the foundation elements (AASHTO, 
2018). There is considerable reliance on values of loads 
prescribed in codes (AASHTO, 2018; INDOT, 2013). 
Ideally, design assumptions would be verified after 
bridge construction to allow for improvement in design 
codes and assumptions over time; however, this is 
rarely done. 

A database consisting of high-quality measurements 
of the actual loads carried by the structural and 
foundation elements of different types of bridges would 
be very helpful in reducing the degree of conservatism 
in design, leading to more cost-effective designs while 
maintaining the safety and serviceability of bridges. 
However, only a limited number of studies have been 
performed for this purpose. Dasenbrock, Mattison, and 
Budge (2012) studied the effect of live loads on the pile 
foundation of the abutment of a two-span bridge. In 
their study, two of the sixteen piles were instrumented 
with vibrating-wire strain gauges along the pile length 
to measure the load transfer upon live load application. 
Mandolini, Russo, and Viggiani (2005) reported a case 
history on the load measurements made for a piled raft 
supporting the main pier of a cable-stayed bridge (the 
Garigliano Bridge in southern Italy) during and after 
construction. They installed load cells on 35 piles, out 
of the 144 piles supporting the pier, and 8 pressure cells 
between the raft and the soil below it in order to 
measure the load distribution between the piles and the 
raft. Similar studies have been reported in which the 
load carrying capacity of foundation elements support-
ing high-rise buildings was measured. Shulyat’ev and 
Kharichkin (2009) measured the load distribution 
among six representative piles, instrumented with strain 
gauges on the pile heads, of a large pile group 
supporting a high-rise building. Yamashita, Yamada, 
and Hamada (2011) studied the load sharing between 
the piles and the rafts of seven high-rise buildings 
supported on pile rafts during and after completion of 
construction (one to two piles were instrumented in 
each case). More case studies like the ones reported 
herein are needed to develop the understanding of the 
response of bridge foundations subjected to dead and 
live loads during and after construction and to verify 

and improve the assumptions made in the design of 
bridge foundations. 

1.2 Project Overview 

The Sagamore Parkway Bridge consists of twin, 
parallel bridges over the Wabash River in Lafayette, 
IN (40u27905.7"N 86u53939.3"W). The old steel-truss 
eastbound bridge was demolished in November 2016 
and replaced by a new seven-span concrete bridge (as 
shown in Figure 1.1) designed by Parsons Consulting 
Engineers and constructed by Superior Construction in 
a period of about 2 years. The new eastbound bridge 
is founded on two end-bents (bent 1 and bent 8) and 
six interior piers (pier 2 to pier 7). During construc-
tion,  the research team from Purdue University h ad a  
unique opportunity to instrument one of the bridge 
piers (pier 7) and its foundation elements with sensors 
to monitor the long-term response of the bridge pier 
under dead and live loads. 

In this report, we present the results of the site 
investigation, the detailed instrumentation schemes 
used for load and settlement measurements, and the 
results of the measurements made at different stages 
during and after bridge construction of the bridge pier 
and its foundation elements subjected to dead and live 
loads. With the instrumentation of the bridge pier 7 and 
on all of the fifteen piles supporting it, the load transfer 
from the superstructure to the pier column, then to the 
pile cap, and to the individual piles in the group was 
monitored for about 3 years. When the superstructure 
load is applied on the pile cap, a portion of the load is 
carried by the soil below the pile cap (known as the cap 
resistance), and the remaining portion of the load is 
carried by the piles in the group. The load distribution 
between the pile cap and the piles in the group was 
investigated in this project to provide valuable insights 
for INDOT to consider accounting for the contribution 
of the pile cap in future foundation designs. The load-
settlement response of all the fifteen production piles 
supporting pier 7 was obtained for dead and live loads. 
In order to understand pile-cap-soil interaction, the 
average load-settlement response of the production 
piles in the pile group supporting pier 7 was compared 
with that obtained from the static load test performed 
in 2016 on a fully-instrumented test pile at the same 
construction site. The load-settlement stiffness of an 
average pile in the group was smaller than that of the 

Figure 1.1 Side view of the seven-span Sagamore Parkway eastbound bridge over the Wabash River, the span lengths between 
piers, and the dead loads at the bottom of each pier. 
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single pile tested at the site. The measured dead and 
live loads were compared with those estimated for 
the design of the Sagamore Parkway Bridge to verify 
the assumptions usually made in bridge design. As an 
example, a production pile was designed following the 
LRFD framework and using the data obtained from 
the static pile load test. 

1.3 Report Structure 

Chapter 2 presents the geological features of the 
Sagamore Parkway Bridge site and the results of the 
site investigation carried out to characterize the soil 
profile at the site. The profiles of the CPT cone 
resistance qc and SPT blow counts NSPT, along with the 
basic properties of the soils in each soil layer of the 
profile (e.g., grain size distribution, particle morphol-
ogies, and gravel content) are reported in this chapter. 

Chapter 3 details the instrumentation of the bridge 
pier (pier 7) and its foundation elements. The instru-
mentation allows for measurement of the pier settle-
ment, the load transfer from the superstructure to the 
foundation elements, and the load distribution among 
the fifteen piles in the group supporting the bridge pier. 

Chapter 4 and Chapter 5 report the measurement 
results of the response of the bridge subjected to dead 
and live loads, respectively. The results consist of the 
bridge pier settlement, the load transfer from the pier to 
the foundation elements, the load distribution among 
individual piles in the pile group supporting pier 7, the 
comparison of the load-settlement response of the 
production piles (in a 365 group configuration) and 
that of a single pile tested in the context of project SPR-
4040, and the load bearing capacity of the pile cap. 

In Chapter 6, we compare the dead and live loads 
measured through bridge monitoring and those esti-
mated in the bridge design. An LRFD design example 
is provided for a production pile using the data 
obtained from the static pile load test. Chapter 7 
summarizes the main contents and findings presented in 
the report. 

2. SITE INVESTIGATION 

In order to obtain the soil stratigraphy at the test site, 
a series of Standard Penetration Tests (SPTs) and Cone 
Penetration Tests (CPTs) were performed in the area 
near pier 7. Soil samples were collected using the split-
spoon sampler during the SPTs, and laboratory tests 
were performed on these soils to obtain their basic 
properties. The site investigation shows that the soil 
profile consists mainly of medium dense-to-dense, 
poorly-graded sand with varying gravel contents (Han, 
Ganju, Prezzi, et al., 2020; Han, Ganju, Salgado, & 
Prezzi, 2019). 

2.1 Topography and Geology 

The Wabash valley at the location of the Sagamore 
Parkway Bridge is about 1.5 miles wide and 200 ft deep 

(Camp & Richardson, 1999). The elevation of the 
lowest point of the river cross-section along the bridge 
(the flowline) is at 500.94 ft above sea level, and 
the average river water level is at 510 ft above sea level. 
The slope of the western river bank is about 10%, 
whereas the eastern river bank has a slope of approxi-
mately 25% (Parsons, 2016). 

Northern and central Indiana, where the test site is 
located at, is covered by Quaternary Wisconsin glacial 
deposits in the form of moraines in the north and till 
plains in central Indiana. The Wabash valley, for many 
miles upstream and downstream of the bridge, is part of 
the Tipton Till Plain, which is covered by 100 ft–200 ft 
of sand and gravel. These deposits typically consist 
of mixtures of sand and gravel. No bedrock outcrops 
are found near the location of the bridge (Camp & 
Richardson, 1999; West, 2000). 

2.2 In Situ Tests 

As shown in Figure 2.2, three SPT borings and 
three CPT soundings were performed at the test site 
within a 70-feet distance from pier 7 (Han, Ganju, 
Salgado, & Prezzi, 2019). The SPTs were performed 
at five-feet intervals, and none of the SPTs reached 
the bedrock. Figure 2.3 shows the profiles of the SPT 
blow counts and the CPT cone resistances obtained 
from these tests. Because of the high gravel content 
found in the soil profile, the cone penetration test 
reached refusal at about 60 ft below the ground 
surface. Since the bridge piles were expected to be 
longer than 100 ft, it was important to obtain the 
cone resistance qc profile beyond this depth to be able 
to design the piles using CPT-based methods. There-
fore, a unique drill-and-push scheme, as described by 
Han, Ganju, Prezzi, et al. (2020), that combines auger 
drilling and cone penetration was implemented in 
CPT-3 to obtain the cone resistance profile up to a 
depth of 107 ft. When the drilling through a gravel layer 
was completed and the cone penetration test was 
resumed, values of cone resistance over a length of 
three cone diameters (3644.6 5 134 mm) below the 
base of the auger bit were discarded because of the 
possibility of soil disturbance within that zone during 
auger drilling. 

During the SPTs, a split-spoon driving sampler was 
used to collect soil samples from various depths. 
Laboratory tests, including sieve analyses and mor-
phology tests, were performed on the soils collected 
from each layer to obtain their grain size distributions 
(as shown in Figure 2.4) and basic properties (as 
summarized in Table 2.1). Relatively low gravel content 
(,20%) was found above a depth of 50 ft, except in a 
single layer at a depth of 30 ft where high gravel content 
(.50%) was observed. The gravel content is generally 
in the range of 30%–50% below 50 ft, reaching as high 
as 60% at a depth of about 55 ft. Herein, any particle 
larger than 4.75 mm is considered gravel, as per the 
Unified Soil Classification System (ASTM D2487-17, 
2017). Broken gravel pieces were observed in the 
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Figure 2.1 Surface geology and physiographic divisions of Indiana (Gray, 2000, as cited in Hill, 2019). 

Figure 2.2 Locations of the SPTs and CPTs performed at the test site (modified after Han, Ganju, Salgado, & Prezzi, 2019). 
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Figure 2.3 In situ test results versus depth: SPT blow counts (NSPT), CPT cone resistances (qc), mean particle size (D50), and 
gravel content. The ground elevation is at 522 ft in the figure (modified after Han, Ganju, Salgado, & Prezzi, 2019). 

Figure 2.4 Grain size distribution of the soils collected at various depths: (a) from 15 to 40 ft, (b) from 45 to 65 ft, (c) from 70 to 
90 ft, and (d) from 95 to 110 ft (after Han, Ganju, Salgado, & Prezzi, 2019). 
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TABLE 2.1 
Soil profile near pier 7 (modified after Han, Ganju, Salgado, & Prezzi, 2019) 

Layer 
No. 

Depth 
(m) 

Soil 
Description ct 

3(kN/m ) 
Gravel 

Content (%) 
D50 

(mm) CU CC R S 
USCS 

Classification 

1 
2 
3 
4 
5 
6 

0–18 
18–27 
27–34 
34–55 
55–74 
74–107 

Clayey silt with sand 
Sand with gravel 

Sandy gravel 
Sand with gravel 

Gravely sand 
Gravely sand 

19.5 
20.0 
21.5 
20.0 
21.5 
21.5 

0 
4 

49 
10 
43 
28 

– 
0.4 
4.5 
0.9 
4.1 
1.1 

3.0 
2.6 

34.6 
4.8 

16.6 
8.3 

0.8 
0.9 
0.7 
0.7 
0.6 
0.8 

– 
0.41 
0.44 
0.50 
0.46 
0.44 

– 
0.82 
0.82 
0.84 
0.81 
0.82 

– 
SP 
SP 
SP 
SP 
SP 

Notes: 
ct 5 total unit weight 
D50 5 mean particle diameter 
CU 5 coefficient of uniformity 5 D60/D10 

CC 5 coefficient of curvature 5 (D30)2/(D106D60) 
R 5 roundness 5 the ratio of the average radius of 

inscribed 
S 5 sphericity 5 the ratio of the diameter of a circle 

circle to the particle projected area 

curvature 

with area 

of the corners of the 

equal to the projected 

particle 

area of 

to the radius of the maximum circle that can be 

the particle to the diameter of the circumscribing 

samples collected from the SPTs, suggesting the 
existence of larger particles in the soil profile that 
could not be collected by the SPT sampler, which has 
an inner diameter of 28.5 mm (Han, Ganju, Prezzi, 
et al., 2020). 

3. INSTRUMENTATION OF THE BRIDGE PIER 
AND FOUNDATION 

In order to measure the load transfer from the 
superstructure to the foundation elements and to obtain 
the load distribution among individual piles in the pile 
group subjected to dead and live loads, both the bridge 
pier and its foundation elements were instrumented 
with sensors. To take advantage of the extensive site 
investigation and the data that were obtained from 
the static pile load tests performed at the Sagamore 
Parkway Bridge site (Ganju et al., 2020; Han, Ganju, 
Prezzi, et al., 2020; Han, Ganju, Salgado, & Prezzi, 
2019; Han, Ganju, Salgado, Prezzi, & Zaheer, 2019), 
pier 7 and its foundation elements were selected for 
instrumentation (pier 7 was the pier closest to the 
location of the static pile load tests previously 
performed in the context of the JTRP research project 
SPR 4040). The foundation for pier 7 consists of a 7-ft-
thick pile cap resting on a group of fifteen (in a layout 
of 365) steel open-ended pipe piles. The instrumenta-
tion for settlement and load transfer measurements is 
detailed below. 

3.1 Settlement Measurements 

Traditional surveying techniques with a TOPCON 
DL-101C digital optical level were used to measure the 
settlement of the pier. The digital level uses a level staff 
with a barcode printed on it as its target (see Figure 
3.1c). Using the barcode level staff and the digital 
level, elevations with submillimeter accuracy can be 
measured (TOPCON, 2011). In order to measure the 

settlement of the bridge pier, it is necessary to have a 
stationary reference point on the ground. For that 
purpose, a reference station was built at a location 
outside the influence zone of the foundation and 
of construction activities on the site. A permanent 
concrete benchmark supported by four hand-driven 
steel micro-piles was constructed about 170 ft south of 
pier 7. In addition, the closest pier of the old westbound 
bridge to pier 7 was used as an auxiliary reference point 
(Figure 3.1a). This old pier was built on a pile group 
foundation about 50 years ago. The settlement of this 
old pier was measured periodically during the present 
study, and no settlement was observed, proving its 
feasibility as an auxiliary reference point. 

In traditional elevation surveying (as illustrated in 
Figure 3.1c), the level is placed between the target 
object and the reference station; readings are taken 
from the level pointing at the level staff placed on top of 
the reference station and then on a fixed point on the 
target object. However, the ground near the bridge pier 
(pier 7) often becomes soft and inaccessible during 
the wet seasons, making it impossible to access the 
bridge pier for settlement measurements. To solve this 
problem, the barcode printed on the level staff was 
scanned using a high-resolution (600 dpi) flatbed 
scanner and printed 1:1 on laminated polymer stickers 
using a flatbed printer. The flatbed scanner scans the 
object being scanned by multiple passes with the 
scanning head maintained perpendicular to the object. 
To test the accuracy of this solution, trial elevation 
measurements were made using a dummy level staff 
with the barcode sticker attached to it and compared 
with measurements made using the standard level staff. 
The barcode sticker had the same level of accuracy 
(submillimeter) of the standard level staff. The barcode 
sticker was attached to the surface of pier 7 (as shown 
in Figure 3.1b) using a plumb bob and a level to ensure 
the verticality of the barcode sticker. Similarly, a 
barcode sticker was attached to the old pier of the 
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Figure 3.1 Scheme for settlement measurement: (a) locations of pier 7 of the eastbound bridge, the reference station, and the old 
pier of the westbound bridge, (b) the barcode sticker attached to pier 7 and the old pier of the westbound bridge, and (c) the 
position of the digital level with respect to the reference station and the bridge pier. 

westbound Sagamore Parkway Bridge for reference 
elevation readings. During each settlement measure-
ment session, three sets of readings were taken, and the 
average settlement was reported to minimize any ran-
dom errors. To minimize systematic errors, the digital 
level was regularly calibrated according to the instruc-
tions provided by the manufacturer. Additionally, the 
digital level was positioned at similar distances from the 
reference point and the bridge pier during each settle-
ment measurement (Figure 3.1c). 

3.2 Load Measurements 

The loads applied to the bridge superstructure are 
transferred through the bridge pier to the foundation 
elements. To measure the loads carried by the bridge 
pier, ten rebar (sister-bar) vibrating-wire strain gauges 
(Geokon Model 4911) and five concrete-embedded 
vibrating-wire strain gauges (Geokon Model 4200) were 

installed at a cross section 3 ft above the base of the 
bridge pier. The layouts of the sensors in this cross-
section of the pier are shown in Figure 3.2. The rebar 
strain gauges were tied to the main vertical rebars 
using iron-tie wires (Figure 3.3a) along the perimeter of 
the bridge pier. The concrete-embedded strain gauges 
were fastened to the horizontal rebars using nylon cable 
ties (Figure 3.3b) along the neutral axis of the bridge 
pier. 

To calculate the total axial load carried by the pier, 
the cross-section of the pier was divided into fifteen 
tributary areas, each one associated with one of the 
sensors (as shown in Figure 3.2). The total axial load 
Qpier in the pier was calculated as the summation of the 
products of the strain ei measured from each sensor by 
the corresponding equivalent Young’s modulus Ei and 
the tributary area Ai: 

X
Qpier ~ EieiAi ðEquation 3:1Þ 
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Figure 3.2 Strain gauges installed in the cross section of the pier and the tributary area associated with each sensor.

Figure 3.3 Installation of sensors in the bridge pier: (a) installation of the rebar (sister-bar) strain gauge and (b) installation of the
concrete-embedded strain gauge.
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where the equivalent Young’s modulus Ei is calculated
as the area-weighted average of the Young’s moduli Ec

and Es of the concrete and steel:

Ei~(ESASizECACi)=Ai ðEquation 3:2Þ

where ACi and ASi are the areas of the concrete and steel
in the ith tributary area Ai. Four concrete samples were
collected during pier pouring, and the collected samples
were tested (ASTM C469/C469M, 2014) 42 days after

the pouring to obtain the Young’s modulus EC of the
concrete (5 3,408 ksi). The Young’s modulus of the
steel was assumed to be 29,000 ksi.

To measure the load distribution among the fifteen
piles supporting pier 7, a pair of arc-weldable,
vibrating-wire (VW) strain gauges (Geokon model
4000) were installed at the head of each pile. Each pair
of strain gauges were welded on diametrically opposite
sides (east and west sides) of the pile to cancel out any
bending that might exist at the pile head. As shown in



Figure 3.4, the installation of the VW strain gauges was
carried out as follows:

1. Mark the location of the strain gauge on the pile surface.

2. Grind off any rust or debris on the pile surface

at the location of the strain gauge using a hand-held

grinder.

3. Position the two mounting blocks and weld them to the

pile surface using a dummy vibrating bar.

4. Replace the dummy vibrating bar with the actual

vibrating bar and frequency sensor (as shown in Figure

3.4a).

The load in each pile can be calculated by multi-
plying the average strain readings from the pair of

sensors at the pile head by the axial stiffness (Apile ES)

of the pile. Table 3.1 summarizes the gauge factors used

for all three types of strain gauges installed in the bridge

pier and on the pile heads. All the sensors and their

cables were carefully protected from damage during

construction and long-term erosion. The arc-weldable

strain gauges were covered using a protective steel angle

welded over them on each side of the pile. To prevent

fluid concrete from entering the steel angle during

concrete pouring, all openings on the steel angle were
filled with the GREAT STUFF insulating foam

sealant. The pile head sensor cables were system-

atically labeled and organized into two bundles (using
zip ties) secured to the rebars of the pile cap (Figure

3.5a). The cable bundles were then wrapped in a
protective polyethylene foam at 8-to-12-inch intervals

(Figure 3.5b).

Figure 3.6 shows the locations of the sensors installed
in the bridge pier and on the pile heads, as well as the
arrangement of the cables for these sensors. The cables
for the arc-weldable strain gauges installed at the pile
heads were collected from the top of the pile cap and
then merged with the cables from the other sensors
(sister-bar type and concrete-embedded type) installed
in the bridge pier. All the cables were organized along
the vertical rebars in the bridge pier, exiting at the
top of the hammer-head pier cap for data collection.
To date, more than 2 years have passed since the
installation of the sensors. All sensors are working
perfectly well due to the careful installation procedures
followed and protection measures taken during the
instrumentation work.

Figure 3.4 Installation of the arch-weldable VW strain gauges on the pile head: (a) components of the strain gauge and
(b) protection of the strain gauge.

TABLE 3.1
Gauge factors for the sensors used in the bridge pier and on the pile heads

Gauge Type Rebar (sister-bar) VW Gauge Concrete-Embedded VW Gauge Arc-Weldable VW Gauge

Model Number

Gauge Factor (me/digit)

4911

0.354

4200

3.304

4000

4.062
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Figure 3.5 Strain gauge cable arrangement and protection: (a) arrangement of the gauge cables along the reinforcement rebars in
the pile cap and (b) protection of the gauge cables using polyethylene foam.
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Figure 3.6 The structural and foundation components of pier 7, the locations of the sensors installed in the bridge pier and on the
foundation elements, and the arrangement of the sensor cables.

4. MEASUREMENT OF THE DEAD LOADS FROM
THE BRIDGE

Load and settlement measurements for pier 7 of the
Sagamore Parkway Bridge over the Wabash River have
been periodically taken throughout the bridge con-
struction stages and after the bridge construction was
completed. In this chapter, we present the results of the
measurements of the settlement of the bridge pier with
time, the loads transferred from the pier to the
foundation elements, the load distribution among

individual piles of the pile group supporting pier 7
and the load bearing capacity of the pile cap. In
addition, we compare the load-settlement response of
the production piles (in a 365 group configuration)
with that of the single, open-ended pile tested for
project SPR-4040.

4.1 Construction Stages

As summarized in Table 4.1, the construction of pier
7 took place in 5 stages: construction of the pier



TABLE 4.1
Construction stages of pier 7 of the Sagamore Parkway Bridge over Wabash River

Stage Description Illustration Time Period

0 Pile driving and pile cap construction 11/15/2016 to 12/4/2017

1 Construction of pier column 12/4/2017 to 12/12/2017

2 Backfilling of the cofferdam and pier cap

pouring

12/12/2017 to 1/18/2018

3 Placement of beams over the span

between pier 7 and bent 8

1/18/2018 to 1/19/2018

4 Placement of beams over the span

between pier 6 and pier 7

1/19/2018 to 1/20/2018

5 Construction of the bridge deck 1/20/2018 to 9/16/2018

Figure 4.1 Total load applied on the pile cap versus the corresponding settlement of pier 7 measured at different stages during
and after bridge construction.
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column, backfilling of the cofferdam and pier cap
pouring, placement of the deck beams over the span
between pier 7 and bent 8 (refer to Figure 1.1),

placement of deck beams over the span between pier
6 and pier 7, and construction of the bridge deck. The
measurements of loads in the piles started when the



construction of the pile cap was completed on
December 4, 2017. The strain readings taken that day
were used as the zero reference for subsequent strain
readings. Therefore, stage 0 consists of the driving of
the piles and the construction of the pile cap. The
construction of the bridge took about 2 years; the
bridge was opened to traffic on September 16, 2018.

4.2 Load-Settlement Curve

Due to limited accessibility to the bridge pier during
construction stages 1 and 2, the barcode polymer
sticker used for settlement measurements was attached
to the bridge pier (see Figure 3.1b) about 5 ft above
the ground surface on January 18, 2018, after the
‘‘hammer-head’’ pier cap (see Figure 3.6) was con-
structed. Since then, periodical measurements have
been taken to monitor the settlement of pier 7 during
and after the bridge construction. From January 18,
2018, to March 17, 2020, a total settlement of 2.7 mm
was measured for pier 7.

Figure 4.1 shows the total load applied in stages on
top of the pile cap versus the corresponding settlement
of pier 7 since completion of stage 2 (construction of the
pier cap and backfilling of the cofferdam). Illustrations of
the corresponding construction stages are shown for refe-
rence below the load-settlement curve in Figure 4.1. The
load-settlement response of pier 7 from the end of stage 2
to the end of the bridge construction is almost linear.

Figure 4.2 shows the average load-settlement
response of the production piles under pier 7. The
load-settlement curve was obtained by plotting the

average vertical load measured at the heads of the piles
in the group versus the pile head settlement (the
assumption is that the bridge pier, the pile cap and all
the piles in the group settled by the same amount).
Because the settlement measurements started only after
the pier cap was constructed (on January 18, 2018), any
pile head settlement that took place before that date
was estimated by extrapolating the average pile head
load-settlement curve obtained after January 18, 2018,
back to the origin (corresponding to zero load on the
piles) by assuming a linear load-settlement response
(shown as the dashed line in Figure 4.2). This way, a
total pile head settlement of 5.2 mm was obtained for
the piles under pier 7 from November 15, 2016 to
March 17, 2020.

Based on observations and measurements made on
hundreds of bridges in Canada and the United States,
tolerable vertical movements for bridge foundations
have been proposed (Bozozuk, 1978). Vertical move-
ments less than 50 mm were classified as tolerable,
vertical movements between 50 and 100 mm were
deemed harmful but tolerable, and vertical movements
greater than 100 mm caused heavy damage to the
bridge structures, and hence, were classified as intoler-
able. Similar observation-based studies were also
performed by other researchers. Table 4.2 summarizes
the settlement criteria for bridge piers and foundations.
AASHTO (2018) prescribes allowable angular distor-
tion criteria to prevent serviceability limit states from
being reached; the angular distortion should be less
than 0.004 for continuous-span bridges and less than
0.008 for simple-span bridges. This means that the

Figure 4.2 The load-settlement curve of the test pile obtained from the pile load test performed in 2016 and that of an average
production pile in the 365 pile group under pier 7 of the Sagamore Parkway Bridge over the Wabash River.
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TABLE 4.2
The settlement criteria for bridge piers and foundations in the literature

Reference Settlement Range Description of Condition

Bozozuk (1978) w , 50 mm

50 mm , w , 100 mm

w . 100 mm

Tolerable

Harmful but tolerable

Intolerable: heavy damage to the bridge structures

Grover (1978) w , 25 mm

50 mm , w , 70 mm

w . 100 mm

Tolerable: no damage

Minor damage

Significant structural damage to the bridges

Walkinshaw (1978) w . 63 mm Poor riding conditions
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allowable differential settlement of the Sagamore
Parkway Bridge (a continuous-span bridge) is 112 mm
(5 92 ft 6 0.004) for the span over pier 6 and pier 7
and 161 mm (5 132 ft 6 0.004) for the span over pier 7
and bent 8. The total settlement of a pier must be
greater than or equal to the differential settlement
between the pier and its neighboring pier (assuming
that none of the piers are moving upward). Based on
the allowable angular distortion prescribed by
AASHTO (2018), the allowable total settlement for
pier 7 is at least 112 mm (the smaller of 112 mm and
161 mm), which is greater than the tolerable total
vertical settlement recommended by the references
summarized in Table 4.2. At a settlement level of 10%
of the pile diameter, ultimate limit states are reached for
piles (Han, Prezzi, et al., 2017; Jardine, Chow, Overy,
Standing, & Jamie, 2005; Kolk et al., 2005; Lehane
et al., 2005; Salgado, 2008). This corresponds to 61 mm
(5 10% 6 610 mm) for the piles supporting pier 7. The
total settlement of the piles under pier 7, measured from
pile installation (Novem-
ber 15, 2016) to the last measurement (March 17, 2020),
was 5.2 mm, which is minimal compared with any of
the settlement criteria mentioned above.

A slow-maintained static load test was performed in
2016 on a single, instrumented open-ended pipe pile
next to pier 7 to provide guidance for the design of the
production piles of the Sagamore Parkway bridge. The
load-settlement curve obtained from the static load test
is also plotted in Figure 4.2 for comparison. The load-
settlement stiffness of the open-ended test pile decreases
slightly with increasing settlement, whereas the average
load-settlement curve for a pile in the group supporting
pier 7 is almost linear. The secant stiffness (the slope
from the origin of the load-settlement space to the point
on the curve being considered) of the single pile
calculated for a settlement level of 5 mm is 76.4 kips/
mm, which is about 1.65 times of that (5 46.4 kips/mm)
of an average pile in the 365 pile group. This is
consistent with the findings in the literature (Han et al.,
2015; Han, Salgado, et al., 2019; Salgado et al., 2017)
that the initial load-settlement stiffness of an average
pile in a pile group is significantly smaller than that of a
single pile installed in the same soil profile. However, the
load-settlement stiffness of a single pile quickly decreases
as the shaft resistance mobilization stabilizes after
reaching its limit value (limit shaft resistance QsL),

Figure 4.3 The load-settlement curves of a single pile and an
average pile in a 464 pile group in dense sand (DR 5 80%)
(after Han, Salgado, et al., 2019).

whereas the average resistance of the piles in a pile
group increases continuously, exceeding that of the
single pile at a large settlement level (e.g., 30 mm–
50 mm for a 464 pile group, as shown in Figure 4.3).

4.3 Load Transfer from the Superstructure to the
Foundation

The dead and live loads coming from the super-
structure are transferred through the bridge pier to the
pile cap and then to the piles. With the readings
collected from the sensors installed in pier 7 and all the
fifteen piles supporting it, the load transfer from the
superstructure to the foundation elements was obtained
at different stages during and after the bridge construc-
tion. Figure 4.4 compares the history of the total load
(shown as the dashed orange line) on top of the pile
cap with the total load (shown as the solid blue line)
carried by the pile group. The corresponding dates of
the measurements and the sketches of the construction
stages are shown below the figure for reference. The
total vertical load on the pile cap consists of two



Figure 4.4 Total load applied on the pile cap and total load carried by the piles in the group measured at different stages during
and after the bridge construction.

Figure 4.5 Contribution of the pile cap to the bearing capacity of the pile group: (a) the equilibrium of forces applied on the pile
cap and (b) the Qpg/Qtotal and Qcap/Qtotal ratios obtained at different stages.
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components: the vertical load coming from the super-
structure through the bridge pier and the gravity load of
the backfill in the cofferdam. The axial load in the bridge
pier was obtained from the sensors installed near the
bottom of the pier column (as shown in Figure 3.6),
whereas the gravity load of the backfill was estimated to
be 1,049 kips based on the volume and unit weight
(assumed to be 110 pcf 5 17.3 kN/m3) of the backfill.

Considering the equilibrium of the pile cap, as shown
in Figure 4.5a, the total load Qtotal on top of the pile
cap is balanced by the load Qpg carried by all the fifteen
piles in the pile group and the load Qcap carried by the
soil under the pile cap. Thus, the difference between the
two curves (representing Qtotal and Qpg) shown in

Figure 4.4 is equal to the load carried by the soil below
the pile cap, which is also the cap resistance Qcap.
Figure 4.5 summarizes the Qpg/Qtotal ratio and the Qcap/
Qtotal ratio for all the bridge construction stages.
Although the majority of the superstructure loads are
carried by the piles, Qcap takes a significant share of the
total load (23% at the end of the bridge construction).
Currently, the pile cap resistance Qcap is not considered
in INDOT bridge designs. Accounting for this addi-
tional load-bearing component in bridge foundation
design can potentially lead to significant savings of
materials and construction time. This additional capacity
could be considered particularly in bridge replacement
and rehabilitation projects.



Figure 4.6 Layout of the pile group and cross section of the
pile cap under pier 7.

Figure 4.6 shows the layout of the 365 pile group of
pier 7 and a cross section of the pile cap. The pile cap has a
cross-sectional area of about 1,023 ft2 and a thickness of 7
ft. The total cross-sectional area of the fifteen piles (with a
diameter of 24 inches) is about 47.1 ft2, corresponding to
only 4.6% of the entire cross-sectional area of the pile cap.
The remaining 95.4% of the area of the pile cap is
supported by the soil under it. This partly explains the
large cap resistance Qcap measured in the present study.

4.4 Distribution of the Dead Loads Among Piles in the
Group

A pair of vibrating-wire strain gauges were installed
on each of the fifteen piles supporting pier 7, as
described in Chapter 3. With the strain readings collec-
ted from these sensors, the load distribution among the
individual piles in the 365 pile group was obtained at
different stages during and after the construction of the
bridge. As shown in Figure 4.7, with a few exceptions,

Figure 4.7 Distribution of dead loads among piles in the group at different stages during and after bridge construction.
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the loads carried by the individual piles in the group
were approximately evenly distributed throughout the
construction stages. According to Han, Salgado, et al.
(2019), the load-settlement response of individual piles
in a pile group are similar at small pile-head settlement
levels (, 5 mm) because the pile group and the
surrounding soil settle as a block in the beginning of
loading. As loading continues and the settlement
increases, the difference in the load response of the
individual piles in the group becomes prominent: the
corner and edge piles tend to develop resistance faster
than the center piles, whereas the center piles have the
potential to develop greater bearing capacity at larger
settlement levels.

5. LIVE LOAD TEST

In order to study the response of the bridge pier and
its foundation elements to live loads, a live load test was
performed between March 19, 2019, and March 20,
2019 (Han, Marashi, et al., 2020). With the bridge
temporarily closed to traffic, twelve fully-loaded triaxle
trucks were used to apply the live loads. In this chapter,
we present and discuss the results of the live load test:
the bridge load-settlement response, the load trans-
ferred from the pier to the pile group, the load
eccentricity, and the load distribution in the bridge pier
and among the fifteen piles in the group.

5.1 Test Procedure

5.1.1 Load Steps

The live load test was performed in seven load steps
by parking loaded triaxle trucks in sequence at specified
locations on the bridge deck near pier 7, as illustrated in
Figure 5.1. The weights of the trucks are provided in
Table 5.1; the average truck weight was 53 kips. Table
5.2 summarizes the number of trucks parked at each
location during the seven load steps of the live load test.
At each specified location (A, B, C, D, or E), three

trucks were parked side-by-side with equal spacing
(about 4 ft) between them to maximize the applied
loads, as shown in Figure 5.2b. The load sequence
prescribed in Table 5.2 was intended to simulate a
number of loaded trucks approaching pier 7, driving
over pier 7, and then leaving the bridge. The load step
with a group of 12 loaded trucks parked on the bridge
deck near pier 7 at the same time (i.e., load step 4)
resulted in the largest load in the pier, representing an
extreme loading condition. The trucks were driven at a
speed of 5–10 mi/hr to reach the specified locations
where they remained parked during testing. After each
load step was applied, the settlement of the pier was
measured at five-minute intervals. Only when the pier
settlement stabilized (with two consecutive settlement
readings being the same), the next load step was
applied. Each load step lasted about 30 minutes on
average. As shown in Figure 5.2, high-intensity LED
work lights were used to illuminate the barcode sticker
on the bridge pier for settlement measurements since
the live load test was performed at night to minimize
traffic disruption. The strain readings were collected
continuously from the sensors installed in the bridge
pier and on the pile heads to obtain the load histories in
the pier and piles throughout the live load test.

5.1.2 Eccentricity of the Live Load

Figure 5.3(a) and (b) show the top view and side
view, respectively, of the locations of the trucks that
were used to apply the live loads on the bridge deck.

Figure 5.1 Locations on the bridge deck where the live loads were applied (the configuration for load step 4 is shown in the
figure).

TABLE 5.1
The weight (in kips) of the twelve trucks used for the live load test
(refer to Figure 5.1 for the locations of the trucks)

Location B Location C Location D Location E

51.5

53.0

51.9

51.5

51.2

51.0

51.6

52.4

56.5

56.4

51.7

58.2
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TABLE 5.2
The numbers of trucks positioned at the specified locations on the bridge deck in each load step during the live load test

Load Step

Number of Trucks

Location A Location B Location C Location D Location E

0

1

2

3

4

5

6

7

–

3

3

3

–

–

–

–

–

3

3

3

3

–

–

–

–

–

3

3

3

3

–

–

–

–

–

3

3

3

3

–

–

–

–

–

3

3

3

–

Figure 5.2 Live load test in progress: (a) settlement measurement for pier 7 and (b) loaded trucks on the bridge deck applying the
live loads.

Figure 5.3 Live loads applied on the bridge: (a) top view of the bridge deck with the trucks that were used to apply the live loads
and (b) cross section of the bridge at pier 7 and the eccentricity of the resultant live load.
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Because of the safety barrier that separates the
pedestrian-walk lane from the traffic lanes, only three
trucks can be parked side-by-side in a row in the traffic
lanes. Consequently, the resultant force applied by the

trucks was eccentric (towards the north side of the
bridge deck, as shown in Figure 5.3a) with respect to
the neutral axis of the bridge pier. Based on the
dimensions shown in Figure 5.3b, the eccentricity



(the distance from the resultant force to the neutral axis
of the bridge pier) is estimated to be 5 ft (1.52 m).

5.2 Test Results

The strain readings were collected continuously from
the strain gauges and then used to calculate the axial
loads in the bridge pier and at the heads of all fifteen
piles in the group supporting the pier at each load step.
The strain readings taken at load step 0 (corresponding
to no trucks on the bridge deck) were used as the zero
reference, and all the load measurements presented in
this chapter resulted from the live load applied by the
trucks on the bridge deck.

5.2.1 Load in the Bridge Pier

As shown in Figure 5.4, the cross section of the
bridge pier can be divided into 5 regions, with three
strain gauges (two rebar and one concrete-embedded
strain gauges) installed in each region. The strain
readings obtained from the three strain gauges in each

region were used to calculate the axial force resulting
over that region. Figure 5.4 shows the distribution
of the axial loads induced only by the live loads within
the cross section of the bridge pier at each load step.
As expected, the axial loads on the northern end of the
pier were greater than those on the southern end due to
the eccentricity of the resultant live load (Figure 5.3).
The eccentricity e of the resultant live load over the
cross section can be calculated as:

e~
X5

i~1

Qidi=
X5

i~1

Qi ðEquation 5:1Þ

where Qi is the axial load in the ith region and di is the
distance measured from the center of the ith region to
the neutral axis of the bridge pier. Figure 5.5 shows
how the resultant live load eccentricity e was calculated.
The distance di is positive above the neutral axis, and
so is the calculated eccentricity e. Using the data shown
in Figure 5.4, the calculated resultant live load eccen-
tricity ranges from 5.0 ft to 6.2 ft (1.52 m–1.89 m) for
all the load steps; these values are in agreement with

Figure 5.4 Live load distribution over the cross section of the bridge pier at each load step during the live load test.

Figure 5.5 Calculation of the eccentricity e of the resultant live load. The distance di is positive above the neutral axis and
negative below the neutral axis.
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the eccentricity (5 5 ft 5 1.52 m) estimated based on
the location of the trucks and the geometry of the
bridge deck (see Figure 5.3), highlighting the high
quality of the load measurements.

As the trucks drove towards pier 7, the loads in the
pier increased gradually (Figure 5.4), peaking at step 4

when all twelve trucks were located close to pier 7

(shown in Figure 5.1 and Table 5.2). As the trucks

drove away from the pier, the live loads in the pier

decreased, returning to nearly zero at step 7 when all

trucks were off the bridge. We emphasize that the loads

shown in Figure 5.4 are load increments with respect to

step 0 (with no trucks on the bridge), representing only

the live loads applied by the trucks parked on the

bridge. The total axial live load in the pier can be

calculated by summing up the axial forces in the five

regions within the cross section of the pier. The

maximum live load (at step 4) in the pier was 460 kips

(2,046 kN). The dead load (resulting from the structural

weight) carried by this pier was measured to be 2,830

kips (12,588 kN), leading to a ratio of 16% between the

live load and the dead load under these conditions.

5.2.2 Load Distribution Among Piles in the Group

Figure 5.6 shows the distribution of the live loads
among the fifteen piles in the 365 pile group at each
load step during the live load test. As a result of the
eccentricity of the applied live loads (see Figure 5.3),
the axial loads in the piles gradually increased from
the south side to the north side at each load step. This is

consistent with the load history seen in the bridge pier
(in Figure 5.4). The loads in the piles increased as the
trucks were driven toward the pier and parked at their
specific locations in each load step. Peak loads on the
piles were reached at load step 4; the loads decreased to
nearly zero as the trucks left the bridge.

5.2.3 Load-Settlement Response and Load Transfer
Behavior

The settlement of the bridge pier was measured at
each load step using a digital level, as described in
Chapter 3. Figure 5.7a shows the load-settlement
response of the bridge pier obtained from the live load
test. The maximum settlement was measured to be less
than 0.4 mm at load step 4, during which the live load
level was maximum. Assuming that the settlement at
the pile heads was the same as the settlement of the
bridge pier, the load-settlement curve for an average
pile in the 365 pile group is plotted in Figure 5.7b.
The secant load-settlement stiffness of an average pile
in the group calculated from zero live load (load step 0)
to the maximum live load level (load step 4) is 42.4 kips/
mm. This is slightly less than that (5 46.4 kips/mm)
obtained from the dead loads applied during bridge
construction, resulting in a settlement of 5 mm, as dis-
cussed in Section 4.2. There was a small (about 0.1 mm)
residual settlement at the end of the live load test (see
Figure 5.7); this may be simply due to a measurement
error since the settlement measurement accuracy of the
digital level is submillimeter.

Figure 5.6 Distribution of the live loads at the heads of the fifteen piles in the group at different load steps during the live
load test.
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Figure 5.7 Load-settlement curve: (a) for the bridge pier and (b) for an average pile in the group.

Figure 5.8 The live load in the bridge pier (pier 7) versus the total load carried by all the piles during the live load test.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/18 19

Figure 5.8 shows the history of total loads in the
bridge pier and in the piles during the live load test. The
total load carried by the bridge pier was greater than
that carried by the piles, and the difference between
these loads was the load carried by the soil immediately
in contact with the pile cap (a force equilibrium
diagram is shown in Figure 4.5a. Taking load step 4
as an example, about 50% of the live load in the bridge
pier was transferred to the piles, while the remaining
50% of the live load was carried by the soil under the
pile cap. In contrast, about 80% of the dead load from
the superstructure was transferred to the piles, and the
remaining 20% was carried by the soil under the pile
cap during the bridge construction stages (see Chapter
4). When the live loads were applied in a short period of
time (less than 30 minutes) during the live load test,
then a greater portion (about 50%) of the live load

was first carried by the pile cap. Gradually, some of
the load carried by the pile cap was transferred to the
piles, as observed during stage 4 of bridge construc-
tion from January 20, 2018, to July 23, 2018 (see
Figure 4.4). The ratio of the load Qcap carried by the
soil below the pile cap to the total superstructure
load Qtotal applied on the pile cap stabilized at 22%
after the bridge construction was completed (the value
changed from 23% to 22% from November 16, 2018, to
December 4, 2019).

6. DESIGN OF BRIDGE FOUNDATIONS

6.1 Comparison Between the Design Loads and
Measured Loads

The average dead load per pile under pier 7 was mea-
sured as 248 kips at the completion of the bridge



construction (measured on November 16, 2018). In
comparison, the dead load was estimated to be 336 kips
per pile in the bridge design, which is 41% greater than
the measured dead load. However, the cap resistance
Qcap was assumed to be zero in the bridge design,
meaning that all the load from the superstructure would
be carried by the piles. In contrast, the load measure-
ment in the present study shows that the piles under
pier 7 carried about 77% (5 3,725 kips) of the total
superstructure load (5 4,869 kips) from the pier, and
the remaining 23% of the total load (1,145 kips) was
carried by the pile cap. If we assuming that the cap
resistance was zero, this produces a total dead load of
4,869 kips to be carried by the group piles, resulting in
an average load of 325 kips per pile (5 4,869/15 5 325
kips). This average load per pile is in good agreement
with the unfactored design dead load of 336 kips. This
means that the dead loads used in the bridge design
were satisfactory estimates of the real values of the dead
loads.

The maximum axial live load carried by a pile in the
group under pier 7 was measured as 23 kips at load step
4 during the live load test (as reported in Chapter 5). As
revealed by the data obtained from the live load test
(see Chapter 5), a large portion (about 50%) of the live
loads were carried by the pile cap. In addition, due to
the eccentricity of the live loads applied by the twelve
trucks on the bridge deck, a bending moment about the
center of the pile cap was applied on the pile cap. For
example, in load step 4 of the live load test, an axial
load of 460 kips and a bending moment of 2,300 kips-ft
resulting from the truck loads were applied on the pile
cap. The fifteen piles under the pile cap carried about
207 kips of the axial load and 822 kips-ft of the bending
moment, and the remaining 253 kips of the axial load
and 1478 kips-ft of the bending moment were carried by
the soil below the pile cap. Assuming that the pile cap
did not carry any load (to be consistent with the bridge
design assumptions) and applying the entire axial load
(5 460 kips) and bending moment (5 2,300 kips-ft)

resulting from the truck loads at load step 4 (an extreme
traffic scenario) to the piles in the group, the maximum
live load carried by a pile in the group is calculated
as 53 kips.

The live load test was modeled by Parsons
Corporation using the bridge analysis software LEAP
Bridge Concrete using the same truck weights and
locations as specified in the live load test. By assuming a
continuous-span bridge, a maximum unfactored live
load of 545 kips in pier 7 and a maximum unfactored
live load of 62 kips in a pile under pier 7 were obtained
from the structural analysis of the live load test. If a
simple-span assumption is used in the simulation, the
maximum unfactored live loads in the pier and in the
pile are 443 kips and 51 kips, which are less than
obtained with the continuous-span assumption. The
maximum live load (5 23 kips) in a pile measured
during the live load test is smaller than those (62 kips or
51 kips) obtained from the simulations, using either
continuous-span or simple-span assumptions. This is
because a significant portion of the applied live load
(and the resulting bending moment) was carried by the
soil below the pile cap during the live load test. The
maximum live load (5 53 kips) in a pile supporting pier
7, corrected for the pile cap resistance (as described
above), is in close agreement with the simulation loads
(62 kips and 51 kips) obtained using the continuous-
span and simple-span assumptions.

The unfactored live load considered in the design of
the production piles was 185 kips; it consists of the
vehicular live load, water load and stream pressure,
wind on live load, wind load on structure, and friction
load. Out of this 185 kips of live load, 81 kips is the
vehicular live load, which is less than half of the total
live load considered in single pile design. These values
are summarized in Table 6.1.

The live loads were applied statically by parking the
trucks at specified locations on the bridge deck during
the live load test. This is different from the scenario in
which the trucks are being driven over the bridge deck

TABLE 6.1
Maximum live loads for pier 7 and for the piles supporting it, according to different approaches

Item Approach

Maximum Live Load

in Pier 7 (kips)

Maximum Live Load for a

Pile Under Pier 7 (kips) Notes

Live load used in pile

design

Live load according to

AASHTO (2018)

Simulation of live load

test–1

Simulation of live load

test–2

Measured live load during

live load test

Measured live load during

live load test (corrected

for pile cap resistance)

LEAP

LEAP

LEAP

LEAP

Measurement

Measurement

–

–

545

443

460

460

185

81

62

51

23

53

Vehicular live load, water load and stream

pressure, wind on live load, wind load

on structure, and friction load

Only vehicular live load

Assuming a continuous-span bridge

Assuming a simple-span bridge

Direct measurement from the sensors

Assuming the entire live load is carried by

the piles (neglecting any capacity

contribution from the pile cap)
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Figure 6.1 Static pile load test performed on instrumented open-ended test pile at the Sagamore Parkway Bridge site (after Han,
Ganju, Salgado, & Prezzi, 2019).
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at some speed. To account for the dynamic effect of
moving vehicles on the bridge response, AASHTO
(2018) prescribed a dynamic factor 1+IM to be applied
to the static loads, where IM (an abbreviation for
impact) is the dynamic load allowance. In the design
of bridge piers, IM is taken as 0.33, meaning that a
dynamic factor of 1.33 needs to be applied to the static
live loads calculated as prescribed in AASHTO (2018).
However, for foundation elements below the ground
surface, IM is equal to 0 and the dynamic factor is
equal to 1, implying that the dynamic effect of the
moving vehicles on the bridge is not experienced by the
foundation elements.

6.2 LRFD Design of the Bridge Foundations

During the bridge design phase, slow-maintained
static load tests (as shown in Figure 6.1) were perfor-
med on two heavily-instrumented test piles—one closed-
ended and the other open-ended—to provide guidance
in the design of the production piles for the interior
piers and the end bents of the Sagamore Parkway
Bridge (Ganju et al., 2020; Han, Ganju, Prezzi, et al.,
2020; Han, Ganju, Salgado, et al., 2020). The high-
quality data collected from the static load tests
yielded the unit shaft resistance qsL along the entire
pile length (as summarized in Table 6.2) and unit base
resistance qb that were used in the design of the pro-
duction piles.

The design of the production piles was performed
following the Load and Resistance Factor Design
(LRFD) framework, as prescribed by AASHTO (2018),

which requires the total factored resistance to be equal to
or greater than the total factored load:

(RFbQn
bzRFsQ

n
sL)gg§LFDLDLnzLFLLLLn

ðInequality 6:1Þ

where RFb and RFs are the resistance factors for the
nominal base resistance Q n

b and the nominal shaft
resistance Q n

sL , respectively. LFDL and LFLL are the
load factors for the nominal dead load DLn and
nominal live load LLn, respectively. According to
Section 10.5.5.2.3 in AASHTO (2018), a resistance
factor of 0.8 (for both RFb and RFs) should be used if
the nominal resistance is obtained based on static load
test(s) on at least one pile and dynamic testing on at
least two piles per site. The group efficiency factor gg is
equal to 1 for driven piles in sand, as specified in
Section 10.7.3.9 of AASHTO (2018).

The unit shaft resistance qsL of the open-ended
production piles of the interior piers of the bridge at
each elevation was assumed to be the same as that of
the open-ended test pile obtained from the static load
test (see Table 6.2). The unit shaft resistance qsL was
then integrated along the pile length to calculate the
total nominal shaft resistance Q n

sL of the produc-
tion pile. Note that the shaft resistance above an
elevation of 475 ft, the 100-year scour elevation, was
ignored to account for the detrimental scour effect
on the shaft resistance. Similarly, the unit annulus
resistance qann 5 21.2 MPa and the unit plug resistance
qplug 5 1.3 MPa obtained from the static load test were



TABLE 6.2
Unit shaft resistance qsL obtained from the static load test on the open-ended pipe pile

Unit Shaft

Elevation Range (ft) Soil Description Resistance (ksf) Gravel Content (%) qc(ksf) qsL/qc

522–513 Clayey silt with sand 0.11 – 20 0.0056

513–501 Clayey silt with sand 0.58 9 80 0.0073

501–486 Sandy gravel 0.55 24 390 0.0014

486–482 Sand with gravel 0.35 15 156 0.0022

482–475 Sand with gravel 0.60 10 234 0.0026

475–464 Gravelly sand 0.95 27 427 0.0022

464–456 Gravelly sand 0.81 41 696 0.0012

456–444 Gravelly sand 0.66 29 801 0.0008

444–432 Gravelly sand 1.11 27 565 0.0020

432–422 Gravelly sand 1.83 30 538 0.0034

Note: The unit shaft resistances were corrected for residual loads.

TABLE 6.3
Dimensions used to calculate the bearing capacity of the piles supporting pier 7

Test Pile Production Pile

Inner Diameter

Outer Diameter

Annulus Thickness

22.00 in

26.00 in

2.00 in

22.50 in

24.0 in

0.75 in

TABLE 6.4
LRFD design check for production piles at pier 7

Base Elevation (ft) nQsL (kips) nQb (kips)

Total Nominal

Resistance (kips) (RFbQn
bzRFsQ

n
sL)gg

Total Factored

Load (kips) Pass the LRFD Check?

420

415

410

405

378

435

493

550

243

243

243

243

621

679

736

794

497

543

589

635

616

616

616

616

No

No

No

Yes
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used to estimate the base resistance of the open-ended
production piles. Considering that both the cone
resistance qc and the SPT blow count NSPT increased
with depth below the elevation of the base of the test
pile (as shown in Figure 2.3), it is conservative to use
the same unit annulus and plug resistances of the test
pile to estimate the base resistance of the production
piles, as the base of the production piles were expected
to be deeper than the test pile. Alternatively, when static
load test data is not available, the Purdue-INDOT pile
design method (Han, Ganju, Prezzi, & Salgado, 2019;
Han, Ganju, Salgado, & Prezzi, 2018, 2019) could be
used to estimate the unit resistances (qsL, qann, and qplug)
of the production piles. Table 6.3 summarizes the
dimensions of the test and production piles that were
used in the resistance calculations.

Table 6.4 shows an example of the LRFD design of
the production open-ended pipe piles of pier 7. Because
both the CPT cone resistance qc and the SPT blow
count NSPT increase with depth below an elevation of
420 ft, indicating the presence of a strong soil layer,
a pile base elevation equal to or deeper than 420 ft was
considered in design. As the base elevation of the

production pile is varied, the total factored resistance
(RFbQ n

b + RFsQ
n

sL )gg was calculated and compared
with the total factored axial load LFDLDLn + LFLLLLn,
which is equal to 616 kips for each pile of pier 7,
according to the loads provided by INDOT. For a base
elevation of the production pile of 405 ft, Inequality 6.1
is satisfied.

This design example above is based on the unit
resistances of the test pile corresponding to the ultimate
state, and thus, it is applicable for the production pile at
the ultimate state, which corresponds to a pile head
settlement of 10%B (5 10% 6 610 mm 5 61 mm)
(Han, Bisht, et al., 2019; Han, Prezzi, & Salgado,
2018; Han, Prezzi, et al., 2017; Han, Salgado, & Prezzi,
2018; Han, Salgado, et al., 2017; Jardine et al., 2005;
Lehane et al., 2005; Salgado, 2008). Almost 2 years
have passed since the construction of the Sagamore
Parkway Bridge was completed in 2018. The monitor-
ing of the bridge during and after construction shows
that the bridge has performed well under dead and
live loads, with only minimal settlement (less than
6 mm) measured, which is less than not only the
ultimate limit state settlement (5 61 mm), but also all



the serviceability limit state settlement criteria intro-
duced in Section 4.2. This proves the successful founda-
tion design based on the high-quality data obtained
from the static load tests.

7. SUMMARY AND CONCLUSION

The eastbound Sagamore Parkway Bridge was
constructed from 2016 to 2018. A bridge pier (pier 7)
and all of the fifteen piles supporting it were instru-
mented with sensors to monitor the bridge and the
foundation response under dead and live loads. The
pier settlement was measured using a digital level and a
polymer barcode sticker attached on the bridge pier.
Ten rebar (sister-bar) vibrating-wire (VW) strain gauges
and five concrete-embedded VW strain gauges were
installed in the pier column near the bottom of it to
measure the load transferred through the bridge pier.
A pair of arc-weldable VW strain gauges were installed
on each of the fifteen piles under pier 7 to obtain the
load distribution among the piles in the group.

The pier settlement and the dead load (resulting from
the weight of the superstructure) transferred from the
bridge pier to its foundation elements were monitored
during the bridge construction stages. The load-settle-
ment response of pier 7 during the bridge construction
was almost linear. A total settlement of 5.2 mm was
obtained for pier 7 from November 15, 2016 to March
17, 2020. The secant stiffness (slope from the origin to
the point being considered) of an average pile in the
365 pile group was 46.4 kips/mm calculated at a
settlement level of 5 mm; this value is about 61% of that
(76.4 kips/mm) of the single, open-ended test pile, as
measured in the static pile load test. At the end of
bridge construction (on November 16, 2018), the piles
under pier 7 carried about 77% (5 3,725 kips) of the
total superstructure load (5 4,869 kips) from the pier,
and the remaining 23% of the total superstructure load
(1,145 kips) was carried by the pile cap. The average
dead load per pile under pier 7 was measured to be 248
kips at the completion of the bridge construction.
Assuming that the dead loads were carried only by the
piles (no dead load carried by the soil under the pile
cap), the average dead load per pile is 325 kips, which is
in good agreement with the unfactored design dead
load of 336 kips per pile.

A live load test was performed in seven load steps
by parking twelve loaded triaxle trucks at specified
locations on the bridge deck near pier 7 in a sequence
that simulates a group of trucks approaching the bridge
pier, parking for a period of time at specified locations,
driving over the pier and leaving the bridge. Due to the
locations where the trucks parked on the bridge deck,
a resultant load eccentricity of 5 ft resulted. This load
eccentricity was reflected in the load distribution within
the bridge pier and among the fifteen piles in the group
under the pier: greater loads were measured in the pier
sections or piles located on the north side of the bridge.
The maximum live load (in step 4) on the pier was 460
kips (2,046 kN), leading to a ratio of 16% between the

live load and the dead load on the bridge pier under the
conditions considered in the present study. About 50%
of the live load applied on the bridge pier was carried
by the piles, and the remaining 50% was carried by the
soil below the pile cap. This ratio is different from that
obtained for the dead loads (about 77% of the load was
carried by the piles at the end of bridge construction).
The maximum vertical live load carried by a pile in the
group under pier 7 was measured as 23 kips at load step
4 during the live load test. Assuming that the pile cap
did not carry any load (to be consistent with the bridge
design assumptions), the maximum live load carried by
a pile in the group is 53 kips. This is in close agreement
with the maximum unfactored live loads in a pile
obtained from simulations performed of the live load
test by Parsons Corporation; the maximum unfactored
live loads in a pile are 62 kips and 51 kips assuming
continuous-span and simple-span bridge models,
respectively.

The monitoring of the bridge during and after bridge
construction has shown that the bridge has performed
well under dead and live loads, proving the successful
foundation design based on the high-quality data
obtained from the static load tests. Continuous
monitoring using a wireless module is recommended
to obtain load and settlement data in the long term.
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